

Australia's University

Advanced Oxidation Technologies

(AOTs) involve the generation of a reactive oxidant (usually hydroxyl radicals), capable of inducing oxidation of organic contaminants. The strong oxidant is produced using one or more primary oxidants (O₃, H₂O₂) and/or energy source (UV light) and/or catalysts (TiO₂, Fe²⁺).

Influent Organics	
Primary Oxidant (O ₃ , H ₂ O ₂ , O ₂) Catalyst (Fe ²⁺ , TiO ₂) Light, Electrical Energy	Oxidant
CO ₂ Less-Toxic More Bio-degradable	

Advanced Oxidation Technologies

Water Research Centre, School of Civil and **Environmental Engineering**

Competitive advantage

- Can achieve oxidation of non-biodegradable and toxic organics such as • aromatics, pesticides, volatile organic compounds;
- Complete mineralization of organics can be achieved;
- Relatively clean technology with no significant amount of waste generated;
- Destruction of organics rather than just transfer from liquid to solid phase can be achieved:
- Enhanced biodegradability of residual organics after AOT process can improve efficiency of biological treatment.

Recent research projects

- Mechanistic understanding and application of Fenton, heterogeneous Fenton, fluidized bed Fenton, photo-Fenton processes;
- Understanding and application of ozonation, ozone/H₂O₂ and catalytic ozonation process for removal of organics in domestic and industrial wastewaters;
- Activated persulfate processes for removal of organics;
- Oxidation of organics via formation of high-valent iron and copper species using tetraamido macrocyclic ligands.

Successful applications

- Treatment of nanofiltration concentrate using AOTs;
- Use of catalytic ozonation for treatment of industrial wastewater.

Facilities and infrastructure

- UNSW Water Research Centre has extensive research resources and facilities including Light sources, Ozone generator, Scintillation counter (for probing C¹⁴ labelled organic compounds), UV-Vis and Fluorescence spectrometers, respirometric apparatus, HPLC and LC-MS for implementation of high-quality research on AOTs for treatment of wastewaters:
- Access to and experience with advanced chemical kinetics simulation software and computational fluid dynamics software for deduction and optimization of process conditions and reactor design.

Our experts

Scientia Professor T. David Waite (d.waite@unsw.edu.au)

新南威尔士大学火炬创新园区

More information

Scientia Professor T. David Waite

Executive Director, UNSW Centre for Transformational Environmental Technologies (CTET)

T: +61 (0) 2 9385 5060

E: d.waite@unsw.edu.au