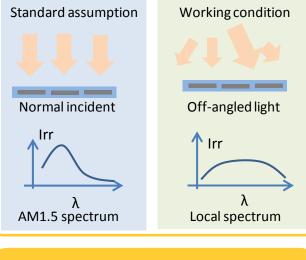
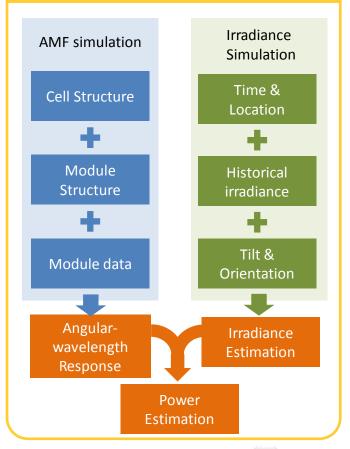


# System-Oriented Modelling for Estimation of Solar **Power Generation and Optical Optimisation of Solar Cells and Modules**


**Never Stand Still** 

Faculty of Engineering


School of Photovoltaic and Renewable Energy Engineering

### 1. Problems

Traditionally, the optical designs of solar cells have been optimised under the assumption of normal incident light and AM1.5 spectrum. However, depending on where a module is installed, this may not be accurate.



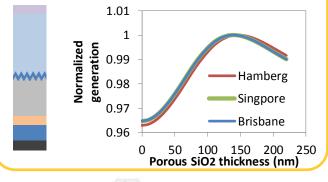
### 2. System-Oriented Modelling



#### 3. System Generation Estimation

The AMF-based method can be used to accurately model and estimate system performance. It can potentially support system design, monitoring, fault analysis and generation-load balance strategies.

The AMF-based method was demonstrated to be more accurate and more consistent compared with the traditional method .


| Traditional<br>method | AMF-based            |
|-----------------------|----------------------|
| 1.03                  | 1.006                |
| 3%                    | 0.6%                 |
| 0.27                  | 0.16                 |
|                       | method<br>1.03<br>3% |

## 4. Cells and Modules Optimisation



The porous SiO<sub>2</sub> glass-ARC of a module with PERC cell (left) was optimised for 3 cities having different latitudes and air masses.

It shows an improvement of up to 3.75%. As the latitude increases, both the optimised ARC thickness and enhancement of power generation increase.



Contact Details: Yang Li 🔤 yang.li3@unsw.edu.au 🕻

+61425332100