

CO₂ Capture Using Membranes

UNESCO Centre for Membrane Science & Technology at UNSW has a long history of developing high performance membranes for CO₂ capture from a range of greenhouse gas emission sources, with expertises expanding from fundamental membrane material development, to module and process design, and to pilotscale onsite demonstration.

More information

Dr. Guangxi Dong

Head of M³DU, UNSW Centre for Transformational Environmental Technologies (CTET) T: +86 158 0090 5001 E: g.dong@unsw.edu.au

CO₂ Capture Using Membrane

UNESCO Centre for Membrane Science & Technology, School of Chemical Engineering, UNSW

Competitive advantage

- Membrane gas separation technology offers great advantages of small footprint, no chemical discharge, modulated design, and easy retrofitting;
- High performance membranes tailor-made for CO₂ capture in our centre achieved performances that could substantially reduce the cost of greenhouse gas abatement;
- Potential applications include CO₂ capture from concentrated emission sources such as cement production, biogas upgrading and natural gas sweetening, etc.

Recent research projects

- Evaluation of CO₂ capture with high performance hollow fibre membranes from flue gas - funded by the Australian Government through its CRC program and through Australian National Low Emissions Coal Research and Development (2011-2014);
- Evaluation of sustainable performance of next generation membranes for flue gas carbon capture at Vales Point - funded by the Department of Planning and Environment through Coal Innovation NSW (2017-2019);
- Evaluation of membrane performance for CO₂ separation from high pressure natural gas well at Otway funded by the Australian Government through its CRC program (2015-2019).

Successful applications

- Our next generation CO₂-philic membranes demonstrated sustainable high performance for flue gas carbon capture at a local coal-fired power station under industrially relevant conditions, among the best in the world;
- Our mechanically reinforced high pressure membranes demonstrated exceptional CO₂ removal performance at a local natural gas well under harsh industrial conditions with pressures above 20 bars over an extended operational period.

Facilities and infrastructure

- UNESCO Centre for Membrane Science and Technology at UNSW is one of the world leading research centres in membrane R&D;
- Extensive research experience in developing high performance membranes for CO₂ capture as well as other gas separation applications;
- Among the best in the world in lab facilities for membrane material and membrane process development from lab- to pilot-scale.

Our experts

 Dr. Guangxi Dong, Head of Membranes, Materials & Manufacturing Development (M³DU), CTET

