



# 计算流体力学模拟辅助纯臭氧氧化/臭 氧催化氧化反应器设计

新南威尔士大学(宜兴)环境技术转移中心

## 我们在做什么?

采用国际一流的计算机流体力学模拟技术耦合臭氧催化/催化氧 化过程的化学反应过程来优化**纯臭氧氧化/臭氧催化氧化反应器** 的设计。

世界一流模拟技术

🧹 高效

2 流体动力学与化学反应的耦合

模拟的过程包括:

臭氧溶解

气体体积分数分布

Gas mixture.Volume Fraction

0.010 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.002 0.001

臭氧自分解 臭氧氧化甲酸 气液两相混合流 高精度

### 工业化纯臭氧氧化/臭氧催化氧化反应器设计

一系列具有固定反应速率常数的基元反应。

在大型工业化纯臭氧氧化/催化臭氧氧化反应器内的化学反应比较复杂,涉及到**水流**,**物料传输和化学反应之间的相互作用**。

与反应器内三维的水流分布类似,大型反应器内反应物,生成物以及中间产物的浓度的分布也是**不均匀**的。

所以在**大型工业化反应器设计**中,除了通常要考虑的"水力死角"之外,还有一个 "化学反应死角"要考虑。

#### 1 反应动力学模拟

采用传统实验方法结合数值模拟得到臭氧氧化甲酸的反 应动力学模型。

| #      | 基元反应                                                                             | 反应速率                                                                                                                     |
|--------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 1      | $0_3 \rightarrow H_2 O_2 + O_2$                                                  | k <sub>1</sub> =2.21e-4 [s <sup>-1</sup> ], R = k <sub>1</sub> [O <sub>3</sub> ]                                         |
| 2      | $0_3 + H_2 0_2 \to 0 H^* + 0_2 + 0_2^*$                                          | k <sub>2</sub> =97.6 [L/mol/s], R = k <sub>2</sub> [O <sub>3</sub> ] [H <sub>2</sub> O <sub>2</sub> ]                    |
| 3      | $0_3 + 0_2^* \rightarrow 0H^* + 0_2$                                             | k <sub>3</sub> =1.5e+09 [L/mol/s], R = k <sub>3</sub> [O <sub>3</sub> ] [O <sub>2</sub> *]                               |
| 4      | $\mathcal{CO}_3^* + \mathcal{O}_3 \rightarrow \mathcal{HCO}_3^- + \mathcal{O}_2$ | k <sub>4</sub> =1.0e+05 [L/mol/s], R = k <sub>4</sub> [CO <sub>3</sub> <sup>2-</sup> ] [O <sub>3</sub> ]                 |
| 5      | $OH^* + HCO_3^- \rightarrow CO_3^* + OH^-$                                       | k <sub>5</sub> =1.22e+07 [L/mol/s], R = k <sub>4</sub> [OH*] [HCO <sub>3</sub> <sup>-</sup> ]                            |
| 6      | $CO_3^* + H_2O_2 \rightarrow HCO_3^- + O_2^*$                                    | k <sub>6</sub> =4.30e+05 [L/mol/s], R = k <sub>6</sub> [H <sub>2</sub> O <sub>2</sub> ] [CO <sub>3</sub> <sup>2-</sup> ] |
| 7      | $HCOOH + O_3 \rightarrow CO_3^* + O_2^*$                                         | k <sub>7</sub> =10[L/mol/s], R = k <sub>4</sub> [HCOOH] [O <sub>3</sub> ]                                                |
| 8      | $HCOOH + CO_3^* \rightarrow CO_2^* + HCO_3^-$                                    | k <sub>8</sub> =1.5e+05[L/mol/s], R = k <sub>8</sub> [HCOOH] [CO <sub>3</sub> *]                                         |
| 9      | $HCOOH + OH^* \rightarrow CO_2^* + H_2O$                                         | k <sub>9</sub> =3.2e+09[L/mol/s], R = k <sub>9</sub> [HCOOH] [OH*]                                                       |
| 1<br>0 | $CO_2^* + O_2 \rightarrow HCO_3^- + O_2^*$                                       | k <sub>10</sub> =4.2e+09[L/mol/s], R = k <sub>10</sub> [CO <sub>2</sub> *] [O <sub>2</sub> ]                             |

#### 3 连续流实验进行模拟验证





反应器内流速分布

0.05 0.02 0.00 ms\*1] 7.2 6.4 5.6 4.8 4.0 3.2 2.4 1.6 0.8 0.0 mg/L

9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.00 0.10 0.20 0.30 0.40 沿反应器高度 (m)



新南威尔士大学火炬创新园区 Torch Innovation Precinct at UNSW

#### 联系人: 刘雪菲博士(x.f.liu@unsw.edu.au)