

Transformational Environmental

Technologies

UNSW Centre for UNSW Centre for Transformational Environmental Technologies

Catalytic Ozonation Reactor Design using Computational Fluid Dynamics (CFD) modelling

Our expertise:

Using the state of art technology, CFD coupling with chemical reactions to optimise the catalytic ozonation reactor design.

World-class Modelling

High Efficiency

High Precision

Catalytic Ozonation in Full-scale Reactors

A set of **elementary chemical reactions** with constant kinetic rates. Reactions in full-scale reactors are complicated, involving the interactions between fluid flow, mass transfer and chemical reactions. Similar to the three-dimensional distribution of flow field in the full-scale reactors, the reactants and products are usually **unevenly distributed** in the reactors, leading to the consideration of 'Chemical Reaction Dead Zone' in addition to 'Flow Dead Zone' in catalytic ozonation reactor design.

1 Kinetic Modelling of Chemical reactions

Traditional experimental methods was employed to obtain the kinetic models for pure ozonation of formate.

#	Elementary reaction	Reaction rate
1	$0_3 \rightarrow H_2 O_2 + O_2$	k ₁ =2.21e-4 [s ⁻¹], R = k ₁ [O ₃]
2	$O_3 + H_2 O_2 \rightarrow OH^* + O_2 + O_2^*$	k ₂ =97.6 [L/mol/s], R = k ₂ [O ₃] [H ₂ O ₂]
3	$0_3 + 0_2^* \rightarrow 0H^* + 0_2$	k ₃ =1.5e+09 [L/mol/s], R = k ₃ [O ₃] [O ₂ *]
4	$\mathcal{CO}_3^* + \mathcal{O}_3 \to \mathcal{HCO}_3^- + \mathcal{O}_2$	k ₄ =1.0e+05 [L/mol/s], R = k ₄ [CO ₃ ²⁻] [O ₃]
5	$OH^* + HCO_3^- \rightarrow CO_3^* + OH^-$	k ₅ =1.22e+07 [L/mol/s], R = k ₄ [OH*] [HCO ₃ ⁻]
6	$CO_3^* + H_2O_2 \rightarrow HCO_3^- + O_2^*$	$k_6 = 4.30e + 05 [L/mol/s], R = k_6 [H_2O_2] [CO_3^{2-}]$
7	$HCOOH + O_3 \rightarrow CO_3^* + O_2^*$	k ₇ =10[L/mol/s], R = k ₄ [HCOOH] [O ₃]
8	$HCOOH + CO_3^* \rightarrow CO_2^* + HCO_3^-$	k ₈ =1.5e+05[L/mol/s], R = k ₈ [HCOOH] [CO ₃ *]
9	$HCOOH + OH^* \rightarrow CO_2^* + H_2O$	k ₉ =3.2e+09[L/mol/s], R = k ₉ [HCOOH] [OH*]
1 0	$CO_2^* + O_2 \rightarrow HCO_3^- + O_2^*$	k ₁₀ =4.2e+09[L/mol/s], R = k ₁₀ [CO ₂ *] [O ₂]

2 Coupling of Hydrodynamics and reactions

Gas-phase ozone mass fraction

Dissolved ozone concentration

3 Continuous Flow Experiments for Model validation

新南威尔士大学火炬创新园区 Torch Innovation Precinct at UNSW

Contact: Dr. Xuefei Liu (x.f.liu@unsw.edu.au)